



# Environmental product declaration

in accordance with ISO 14025 and EN 15804+A2

## Zaptec PRO MID (Norway)





EPD-Global

Owner of the declaration:

Zaptec Charger AS

**Product:** 

Zaptec PRO MID (Norway)

**Declared unit:** 

pcs

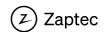
This declaration is based on Product Category Rules: CEN Standard EN 15804:2012+A2:2019, EN 50693:2019

and PCR EPD Italy 007 serves as core PCR PCR EPD Italy 017 - Electronic and electrical products and

systems - Charging stations

Program operator:

**EPD-Global** 


**Declaration number:** 

Issue date:

Valid to:

**EPD** software:

LCAno EPD generator ID: 1242654



### **General information**

#### Product

Zaptec PRO MID (Norway)

### **Program operator:**

**EPD-Global** 

Post Box 5250 Majorstuen, 0303 Oslo, Norway

Phone: +47 977 22 020 web: www.epd-global.com

### **Declaration number:**

### This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012+A2:2019, EN 50693:2019 and PCR EPD Italy 007 serves as core PCR

PCR EPD Italy 017 - Electronic and electrical products and systems - Charging stations

#### Statement of liability:

The owner of the declaration shall be liable for the underlying information and evidence. EPD-Global shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

#### **Declared unit:**

pcs Zaptec PRO MID (Norway)

### **Declared unit with option:**

A1, A2, A3, A4, A5, B6, C1, C2, C3, C4, D

#### **Functional unit:**

1 pc of Zaptec Pro Mid without charging cable, installed and used to charge electrical vehicles during a service life of 20 years, including waste treatment at end-of-life.

### General information on verification of EPD from EPD tools:

Independent verification of data, other environmental information and the declaration according to ISO 14025:2010, § 8.1.3 and § 8.1.4. Verification of each EPD is made according to EPD-Global's guidelines for verification and approval requiring that tools are i) integrated into the company's environmental management system, ii) the procedures for use of the EPD tool are approved by EPD-Global, and iii) the process is reviewed annually by an independent third party verifier. See Appendix G of EPD-Global's General Programme Instructions for further information on EPD tools

### **Verification of EPD tool:**

### Owner of the declaration:

Zaptec Charger AS Contact person: Fredrik Hegland Phone:

e-mail: fh@zaptec.com

#### Manufacturer:

Zaptec Charger AS Vassbotnen 1 Sandnes, Norway

### Place of production:

Westcontrol AS (Zaptec Production Site) Breivikvegen 7 4120 Tau, Norway

#### Management system:

### Organisation no:

912 494 470

#### Issue date:

### Valid to:

### Year of study:

2024

### **Comparability:**

EPD of construction products may not be comparable if they not comply with EN 15804 and seen in a building context.

### **Development and verification of EPD:**

The declaration is created using EPD tool lca.tools ver EPD2022.03, developed by LCA.no. The EPD tool is integrated in the company's management system, and has been approved by EPD-Global.

Developer of EPD: Rennie Babwah

Reviewer of company-specific input data and EPD: Børge Heggen Johansen, Energiråd AS

#### Approved:



Independent third party verification of the EPD tool, background data and test-EPD in accordance with EPDNorway's procedures and guidelines for verification and approval of EPD tools. Approval number: NEPDT86.

Third party verifier:

Elisabet Amat, GREENIZE projects

(no signature required)



### **Product**

### **Product description:**

Zaptec Pro MID is an alternating current (AC) wall or column mounted charging station in accordance with IEC61851-1, EVSE mode 2. The charging station is for large scale deployment such as public parking, offices, multi-family housing etc.

### **Product specification**

| Materials                         | kg        | %        |
|-----------------------------------|-----------|----------|
| Brass                             | 0.3909    | 9.50     |
| Chemical                          | 0.0006888 | 0.01673  |
| Electronic - Printed wiring board | 0.409     | 9.94     |
| Electronics                       | 0.7846    | 19.06    |
| Metal - Stainless steel           | 0.1002    | 2.43     |
| Metal - Steel                     | 0.0004    | 0.009717 |
| Metall                            | 0.000715  | 0.01737  |
| Plastic                           | 0.00569   | 0.1382   |
| Plastic - Polycarbonate (PC)      | 1.74      | 42.15    |
| Plastic - Polyethylene (HDPE)     | 0.0012    | 0.02915  |
| Plastic - Polyurethane (PUR)      | 0.0006888 | 0.01673  |
| Printed paper                     | 0.1534    | 3.73     |
| Recycled cardboard                | 0.3886    | 9.44     |
| Rubber                            | 0.0472    | 1.15     |
| Sand                              | 0.09822   | 2.39     |
| Total                             | 4.12      | 100.00   |

| Packaging                  | kg   | %      |
|----------------------------|------|--------|
| Packaging - Cardboard      | 0.03 | 7.88   |
| Packaging - Plastic straps | 0.01 | 2.36   |
| Packaging - Wood           | 0.28 | 89.75  |
| Total incl. packaging      | 4.43 | 100.00 |

### Technical data:



Dimensions: 392 mm W: 258 mm D: 112 mm

Installation circuit:

Max. 63A circuit breaker on installation circuit for charging stations.

Backplate connection box Cable cross section 2.5–10 mm2 Cable diameter 10–18,5mm

Installation network, Voltages:

TN, IT and TT 230VAC  $\pm 10\%$  400VAC  $\pm 10\%$ 

Max. current and charging output:

22 kW at 32A / 3-phase (applicable to TN networks only)\* 12,7 kW at 32A / 3-phase (IT network)\* 7,4 kW at 32A / 1-phase (IT/TN network)\* 3W at standby

Integrated circuit breaker:

Built-in 3 x 40A MCB (miniature circuit breaker) type C

Charging socket:

IEC 62196-2 Type 2 with integrated self-closing cover. Electronic lock can be locked permanently by the user.

Earth fault protection:

Built-in type B RCD Calibration and a self-test are carried out before the start of every charging cycle. RCD can be automatically reset by disconnecting from the charging connector.

Integrated Power Meter:

MID class B certified (EN 50470) Display showing total energy (kWh)

Theft protection:

The front cover of the Zaptec Pro can only be opened using a special tool. The charging cable can be locked permanently to the charging station.

Load balancing:

Together with other Zaptec Pro charging stations, available power in the installation will be distributed automatically between the devices and phases.

Phase balancing:

The charging station will dynamically select any single phase or 3-phase in a system with other Zaptec Pro charging stations, depending on the available power

Communications interface and cloud connection/network:

4G LTE-M Wi-Fi 2.4 GHz, IEEE 802.11 b/g/n (channels 1-11) Powerline (PLC) – HomePlug Green PHY®, 10 Mbit/s

Identification and configuration:

Bluetooth 5.1 (BR/EDR/BLE) RFID/NFC reader – ISO/IEC 14443 A (Type A, 13.56 MHz) ISO/IEC 15693 (Mifare classic, 13.56 MHz) Plug and Charge - Hardware support for ISO15118 RGBW LED-circle for status of unit

Standards and approvals:

CE compliance in accordance with the Radio Equipment Directive 2014/53/EU and ROHS Directive 2011/65/EU, and compliance with IEC 61851-1 (TUV SÜD) and IEC 61851-21-2

Temperature range: -30°C to +40°C

Degree of protection:

IP54, indoor and outdoor use IK10 impact protection UL94 5VB flammability rating UV resistant

Electrical protection Protection class I Overvoltage category III (4kV)

Integration services Third-party integration alternatives (API, Webhooks) OCPP 1.6J cloud-to-cloud Message subscription

Market:

Europe

Reference service life, product

20 years

Reference service life, building or construction works

NA



### LCA: Calculation rules

#### **Declared unit:**

pcs Zaptec PRO MID (Norway)

### **Cut-off criteria:**

All major raw materials and all the essential energy is included. The production processes for raw materials and energy flows with very small amounts (less than 1%) are not included. These cut-off criteria do not apply for hazardous materials and substances.

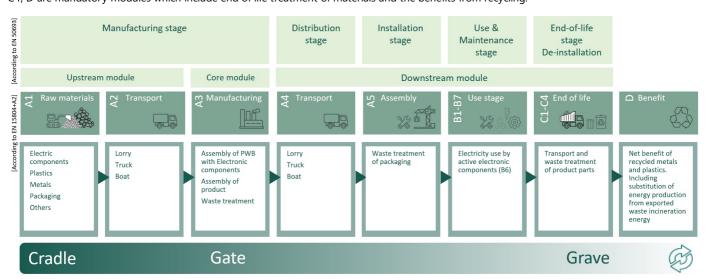
#### Allocation:

The allocation is made in accordance with the provisions of EN 15804. Incoming energy and water and waste production in-house is allocated equally among all products through mass allocation. Effects of primary production of recycled materials is allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis.

### Data quality:

Specific data for the product composition are provided by the manufacturer. The data represent the production of the declared product and were collected for EPD development in the year of study. Background data is based on EPDs according to EN 15804 and different LCA databases. The data quality of the raw materials in A1 is presented in the table below.

| Materials                         | Source           | Data quality | Year |
|-----------------------------------|------------------|--------------|------|
| Brass                             | ecoinvent 3.10.1 | Database     | 2023 |
| Chemical                          | ecoinvent 3.10.1 | Database     | 2023 |
| Electronic - Printed wiring board | ecoinvent 3.10.1 | Database     | 2023 |
| Electronics                       | ecoinvent 3.10.1 | Database     | 2023 |
| Metal - Stainless steel           | ecoinvent 3.10.1 | Database     | 2023 |
| Metal - Steel                     | ecoinvent 3.10.1 | Database     | 2023 |
| Metall                            | ecoinvent 3.10.1 | Database     | 2023 |
| Packaging - Cardboard             | ecoinvent 3.10.1 | Database     | 2023 |
| Packaging - Plastic straps        | ecoinvent 3.10.1 | Database     | 2023 |
| Packaging - Wood                  | ecoinvent 3.10.1 | Database     | 2023 |
| Plastic                           | ecoinvent 3.10.1 | Database     | 2023 |
| Plastic - Polycarbonate (PC)      | ecoinvent 3.10.1 | Database     | 2023 |
| Plastic - Polyethylene (HDPE)     | ecoinvent 3.10.1 | Database     | 2023 |
| Plastic - Polyurethane (PUR)      | ecoinvent 3.10.1 | Database     | 2023 |
| Printed paper                     | ecoinvent 3.10.1 | Database     | 2023 |
| Recycled cardboard                | ecoinvent 3.10.1 | Database     | 2024 |
| Rubber                            | ecoinvent 3.10.1 | Database     | 2023 |




### System boundaries (X=included, MND=module not declared, MNR=module not relevant)

|                                        | P                | roduct stag | je            |           | uction<br>ion stage |     |             |        | Use stage   |               |                              |                          |                                   | End of I  | ife stage           |          | Beyond the system boundaries           |
|----------------------------------------|------------------|-------------|---------------|-----------|---------------------|-----|-------------|--------|-------------|---------------|------------------------------|--------------------------|-----------------------------------|-----------|---------------------|----------|----------------------------------------|
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | naw<br>materials | Transport   | Manufacturing | Transport | Assembly            | Use | Maintenance | Repair | Replacement | Refurbishment | Operational<br>energy<br>use | Operational<br>water use | De-<br>construction<br>demolition | Transport | Waste<br>processing | Disposal | Reuse-Recovery-<br>Recycling-potential |
|                                        | A1               | A2          | A3            | A4        | A5                  | B1  | B2          | В3     | B4          | B5            | В6                           | В7                       | C1                                | C2        | C3                  | C4       | D                                      |
|                                        | Χ                | Х           | Х             | X         | Χ                   | MND | MND         | MND    | MND         | MND           | Х                            | MND                      | Х                                 | Х         | Х                   | Χ        | X                                      |

### System boundary:

The analysis is a cradle-to-grave study made for one charger manufactured, installed and used under ordinary conditions over its lifetime. Modules A1-A5 are included in the analysis. It includes the extraction and production of raw materials, transportation to the factory, the production process itself, transportation to market and installation of the product. B6 is the operational energy usage based on a normal use. C1-C4, D are mandatory modules which include end of life treatment of materials and the benefits from recycling.



#### Additional technical information:

Compliant with the following directives: Radio Equipment Directive (RED) 2014/53/EU ROHS Directive 2011/65/EU Measuring Instruments Directive 2014/32/EU

The following standards have been applied:

EN IEC 61851-1:2019

EN 614369-1:2011

EN IEC 61439-7:2020

EN 62423:2012+A11:2021+A12:2022

EN 60898-1:2019

EN 62311:2008

EN IEC 61851-21-2:2021

EN 301 489-1 V2.2.3

EN 301 489-3 V2.2.0

EN 301 489-17 V3.2.4

EN 301 489-52 V1.2.1

EN 300 328 V.2.2.2

EN 300 330 V2.1.1

EN 301 908-1 V15.2.1

EN 301 908-1 V15.2.1

EN 301 908-13 V13.2.1 EN IEC 63000:2018

EN 50470-1:2006

EN 50470-3:2006



#### LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

Module A4 = An economic allocation analysis was performed on the year of study (2024) and the average distance to market was calculated.

Modules A5 = installation is done by manual labor. The use of portable electrical devices such as drills usually have low energy requirements falling under the cut-off criterion of 1% and are therefore neglected. No product scraps are generated during installation, but the end-of-life treatment of packaging is accounted for in this module.

#### Use Phase

Modules B1,B2,B3,B4,B5 and B7 are not declared.

#### Maintenance (Module B2)

The product was designed to be as maintenance free as possible and assumed that the entire product will last 20 years. Therefore, extraordinary maintenance activities are not considered in the creation of the EPD. Ordinary maintenance activities such as inspection and cleaning of the product are considered negligible, manual activities and are therefore not considered.

Module B6 = The operational energy use of the charging station is calculated based on the methodology provided in EPD Italy PCR 017 for charging stations (details are provided in section 4.2.3.5). Calculations focus on the energy consumed by the charging station during its entire service life. It is important to note that impacts related to electricity delivered to the charging vehicle are outside of the system boundaries of this EPD. Use phase considers only the energy absorbed by the charging station to keep operating and ready (e.g., display, LEDs) to transfer electric power to the connected vehicle. The energy absorbed is calculated as follows:

- Power consumed by the charging station (Puse) = 0.005 per hour
- Reference service life of the charging station (RSL) = 20 years (standard value)
- Hours per year = 8760 hours (standard value)
- Total Power consumed by the charging station, Euse [kWh] = 876

Module C1 = De-installation is done by manual labor. The use of portable electrical devices such as drills usually have low energy requirements falling under the cut-off criterion of 1% and are therefore neglected.

Module C2 = An average distance between the market and the waste treatment facility is considered. It is assumed that transport of charging stations after the use phase is done by the end user.

Modules C3 and C4 = Waste treatment of the product follows the default values provided in EN 50693, Product Category Rules for life cycle assessments of electronic and electrical products and systems, table G.4. This table specified how different types of raw materials used in A1 will likely be treated during the end-of-life of the product. Waste treatments in C3 include material recycling and incineration with energy recovery and fly ash extraction. Disposal in C4 consist of landfilling of different waste fractions and of ashes.

Module D = The recyclability of metals, plastics, and electronic components allows the producers a credit for the net scrap that is produced at the end of a product's life. The benefits from recycling of net scrap are described in formula from EN 15804:2012+A2:2019. Substitution of heat and electricity generated by the incineration with energy recovery of plastic insulation and other parts is also calculated in module D.

| Transport from production place to user (A4)                                | Capacity utilisation<br>(incl. return) % | Distance (km) | Fuel/Energy Consumption | Unit  | Value<br>(Liter/tonne) |
|-----------------------------------------------------------------------------|------------------------------------------|---------------|-------------------------|-------|------------------------|
| Truck, 16-32 tonnes, EURO 6 (km) - Europe                                   | 38.8 %                                   | 1235.00       | 0.045                   | l/tkm | 55.58                  |
| Assembly (A5)                                                               | Unit                                     | Value         |                         |       |                        |
| Waste, mixed plastic, to average treatment - including transport (kg)       | kg                                       | 0.008189      |                         |       |                        |
| Waste, wood, to average treatment - A3 including transport (kg)             | kg                                       | 0.2847        |                         |       |                        |
| Waste, cardboard and paper, to average treatment - including transport (kg) | kg                                       | 0.025         |                         |       |                        |
| Operational energy (B6)                                                     | Unit                                     | Value         |                         |       |                        |
| Electricity, European average (kWh)                                         | kWh                                      | 876.00        |                         |       |                        |
| Transport to waste processing (C2)                                          | Capacity utilisation<br>(incl. return) % | Distance (km) | Fuel/Energy Consumption | Unit  | Value<br>(Liter/tonne) |
| Truck, 16-32 tonnes, EURO 6 (km) - Europe                                   | 38.8 %                                   | 100.00        | 0.045                   | l/tkm | 4.50                   |



| Waste processing (C3)                                                                             | Unit | Value   |  |  |
|---------------------------------------------------------------------------------------------------|------|---------|--|--|
| Waste treatment of plastic mixture, incineration with energy recovery and fly ash extraction (kg) | kg   | 0.9714  |  |  |
| Steel to recycling (kg)                                                                           | kg   | 0.08047 |  |  |
| Waste treatment per kg used PWB, shredding and separation - C3 (kg)                               | kg   | 1.19    |  |  |
| Waste treatment per kg electronics scrap from PWB, with components, recycling of metals C3 (kg)   | kg   | 0.5975  |  |  |
| Copper to recycling (kg)                                                                          | kg   | 0.2346  |  |  |

| Disposal (C4)                                                                                     | Unit | Value   |  |  |
|---------------------------------------------------------------------------------------------------|------|---------|--|--|
| Landfilling of ashes from incineration of Plastic mixture, process per kg ashes and residues (kg) | kg   | 0.03397 |  |  |
| Landfilling of plastic mixture (kg)                                                               | kg   | 0.9714  |  |  |
| Landfilling of steel (kg)                                                                         | kg   | 0.02012 |  |  |
| Landfilling of hazardous waste (kg)                                                               | kg   | 0.5975  |  |  |
| Landfilling of copper (kg)                                                                        | kg   | 0.1564  |  |  |

| Benefits and loads beyond the system boundaries (D)                          | Unit | Value   |  |  |
|------------------------------------------------------------------------------|------|---------|--|--|
| Substitution of electricity, in Norway (MJ)                                  | MJ   | 1.49    |  |  |
| Substitution of thermal energy, district heating, in Norway (MJ)             | MJ   | 22.58   |  |  |
| Substitution of Polypropylene, PP granulate (kg)                             | kg   | 0.9714  |  |  |
| Substitution of primary steel with net scrap (kg)                            | kg   | 0.08047 |  |  |
| Substitution of primary metals with net scrap from PWB, with components (kg) | kg   | 0.1757  |  |  |
| Substitution of primary copper with net scrap (kg)                           | kg   | 0.2346  |  |  |



#### **LCA: Results**

The LCA results are presented below for the declared unit defined on page 2 of the EPD document.

| Environm       | ental impact                     |                                                   |                                              |                                              |                                              |                                              |                                              |                                                  |
|----------------|----------------------------------|---------------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|--------------------------------------------------|
|                | Indicator                        | Uni                                               | 1                                            | A1                                           | A2                                           | A3                                           | A4                                           | A5                                               |
|                | GWP-total                        | kg CO <sub>2</sub>                                | -eq                                          | 2.08E+02                                     | 6.98E-01                                     | 2.79E-01                                     | 1.04E+00                                     | 5.14E-01                                         |
|                | GWP-fossil                       | kg CO <sub>2</sub>                                | -eq                                          | 2.08E+02                                     | 6.97E-01                                     | 2.68E-01                                     | 1.04E+00                                     | 1.04E-02                                         |
|                | GWP-biogenic                     | kg CO <sub>2</sub>                                | -eq                                          | -3.07E-01                                    | 4.03E-04                                     | 8.86E-03                                     | 7.90E-04                                     | 5.03E-01                                         |
|                | GWP-luluc                        | kg CO <sub>2</sub>                                | -eq                                          | 3.77E-01                                     | 2.62E-04                                     | 1.48E-03                                     | 3.66E-04                                     | 1.96E-06                                         |
|                | ODP                              | kg CFC1                                           | 1 -eq                                        | 9.19E-06                                     | 1.18E-08                                     | 7.63E-09                                     | 2.14E-08                                     | 1.25E-09                                         |
| C.             | АР                               | mol H+                                            | -eq                                          | 1.66E+00                                     | 5.98E-03                                     | 1.21E-03                                     | 3.24E-03                                     | 4.86E-05                                         |
| <del></del>    | EP-FreshWater                    | kg P -                                            | eq                                           | 2.74E-01                                     | 3.95E-05                                     | 8.89E-05                                     | 6.87E-05                                     | 7.52E-08                                         |
| <del></del>    | EP-Marine                        | kg N -                                            | eq                                           | 2.98E-01                                     | 1.66E-03                                     | 2.12E-04                                     | 1.09E-03                                     | 2.03E-05                                         |
| <del>**</del>  | EP-Terrestial                    | mol N                                             | -eq                                          | 3.22E+00                                     | 1.83E-02                                     | 2.33E-03                                     | 1.19E-02                                     | 2.12E-04                                         |
|                | POCP                             | kg NMVC                                           | OC -eq                                       | 9.53E-01                                     | 5.91E-03                                     | 7.44E-04                                     | 5.08E-03                                     | 5.61E-05                                         |
|                | ADP-minerals&metals <sup>1</sup> | kg Sb-                                            | eq                                           | 7.16E-02                                     | 1.85E-06                                     | 7.47E-06                                     | 3.39E-06                                     | 1.33E-07                                         |
|                | ADP-fossil <sup>1</sup>          | МЈ                                                |                                              | 2.72E+03                                     | 9.50E+00                                     | 3.25E+00                                     | 1.45E+01                                     | 8.83E-02                                         |
| <u>@</u>       | WDP <sup>1</sup>                 | m <sup>3</sup>                                    |                                              | 8.74E+01                                     | 4.14E-02                                     | 1.79E+01                                     | 7.14E-02                                     | 1.32E-01                                         |
|                | Indicator                        | Unit                                              | В6                                           | C1                                           | C2                                           | C3                                           | C4                                           | D                                                |
|                | GWP-total                        | kg CO <sub>2</sub> -eq                            | 3.75E+02                                     | 0.00E+00                                     | 8.39E-02                                     | 3.49E+00                                     | 2.42E-01                                     | -1.27E+01                                        |
|                | GWP-fossil                       | kg CO <sub>2</sub> -eq                            | 3.71E+02                                     | 0.00E+00                                     | 8.39E-02                                     | 2.64E+00                                     | 2.41E-01                                     | -1.26E+01                                        |
|                | GWP-biogenic                     | kg CO <sub>2</sub> -eq                            | 2.61E+00                                     | 0.00E+00                                     | 6.40E-05                                     | 8.56E-01                                     | 1.22E-04                                     | -3.94E-02                                        |
|                | GWP-luluc                        | kg CO <sub>2</sub> -eq                            | 8.64E-01                                     | 0.00E+00                                     | 2.96E-05                                     | 7.65E-04                                     | 1.13E-03                                     | -2.00E-02                                        |
| Ö              | ODP                              | kg CFC11 -eq                                      | 3.15E-05                                     | 0.00E+00                                     | 1.73E-09                                     | 3.13E-08                                     | 1.02E-08                                     | -9.54E-03                                        |
|                | AP                               | mol H+ -eq                                        | 2.17E+00                                     | 0.005.00                                     | 2.625.04                                     | 4 405 00                                     |                                              | -7.31E-01                                        |
|                |                                  |                                                   | 2.172+00                                     | 0.00E+00                                     | 2.62E-04                                     | 1.48E-03                                     | 6.91E-04                                     | -7.51L-01                                        |
| -              | EP-FreshWater                    | kg P -eq                                          | 3.97E-02                                     | 0.00E+00<br>0.00E+00                         | 5.56E-06                                     | 3.72E-06                                     | 6.91E-04<br>5.83E-06                         | -4.12E-03                                        |
| **             | EP-FreshWater<br>EP-Marine       |                                                   |                                              |                                              |                                              |                                              |                                              |                                                  |
|                |                                  | kg P -eq                                          | 3.97E-02                                     | 0.00E+00                                     | 5.56E-06                                     | 3.72E-06                                     | 5.83E-06                                     | -4.12E-03                                        |
| <del>***</del> | EP-Marine                        | kg P -eq<br>kg N -eq                              | 3.97E-02<br>2.75E-01                         | 0.00E+00<br>0.00E+00                         | 5.56E-06<br>8.84E-05                         | 3.72E-06<br>4.35E-04                         | 5.83E-06<br>2.70E-04                         | -4.12E-03<br>-3.73E-02                           |
| <b>4</b>       | EP-Marine<br>EP-Terrestial       | kg P -eq<br>kg N -eq<br>mol N -eq                 | 3.97E-02<br>2.75E-01<br>3.39E+00             | 0.00E+00<br>0.00E+00<br>0.00E+00             | 5.56E-06<br>8.84E-05<br>9.62E-04             | 3.72E-06<br>4.35E-04<br>4.66E-03             | 5.83E-06<br>2.70E-04<br>1.66E-03             | -4.12E-03<br>-3.73E-02<br>-5.16E-01              |
| <b>A</b>       | EP-Marine EP-Terrestial POCP     | kg P -eq<br>kg N -eq<br>mol N -eq<br>kg NMVOC -eq | 3.97E-02<br>2.75E-01<br>3.39E+00<br>8.61E-01 | 0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00 | 5.56E-06<br>8.84E-05<br>9.62E-04<br>4.11E-04 | 3.72E-06<br>4.35E-04<br>4.66E-03<br>1.27E-03 | 5.83E-06<br>2.70E-04<br>1.66E-03<br>7.63E-04 | -4.12E-03<br>-3.73E-02<br>-5.16E-01<br>-1.49E-01 |

GWP-total = Global Warming Potential total; GWP-fossil = Global Warming Potential fossil fuels; GWP-biogenic = Global Warming Potential biogenic; GWP-luluc = Global Warming Potential land use and land use change; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential, Accumulated Exceedance; EP-freshwater = Eutrophication potential, fraction of nutrients reaching freshwater end compartment: EP-marine = Eutrophication potential, fraction of nutrients reaching marine end compartment; EP-terrestrial = Eutrophication potential, Accumulated Exceedance; POCP = Formation potential of tropospheric ozone; ADP-minerals&metals = Abiotic depletion potential for non-fossil resources; ADP-fossil = Abiotic depletion for fossil resources potential; WDP = Water (user) deprivation potential, deprivation-weighted water consumption

### Remarks to environmental impacts

The LCA results in the EPD are calculated using a specific methodological approach for accounting energy resources, see the additional requirements section for more information. In this EPD the following approach was used: Location-based approach.

<sup>&</sup>quot;Reading example: 9.0 E-03 = 9.0\*10-3 = 0.009"

<sup>1.</sup> The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator



| Additional env | ironmental impact in | dicators          |    |          |          |          |          |          |
|----------------|----------------------|-------------------|----|----------|----------|----------|----------|----------|
|                | Indicator            | Unit              |    | A1       | A2       | A3       | A4       | A5       |
|                | PM                   | Disease incidence |    | 1.22E-05 | 4.17E-08 | 1.56E-08 | 8.03E-08 | 6.25E-10 |
|                | IRP <sup>2</sup>     | kgBq U235 -eq     |    | 2.36E+01 | 1.02E-02 | 1.25E-01 | 1.85E-02 | 3.43E-04 |
| 4              | ETP-fw <sup>1</sup>  | CTUe              |    | 5.45E+03 | 1.11E+00 | 2.78E+00 | 1.91E+00 | 1.01E-01 |
| 40.*<br>*****  | HTP-c <sup>1</sup>   | CTUh              |    | 1.30E-07 | 0.00E+00 | 2.57E-10 | 0.00E+00 | 8.00E-12 |
| 4              | HTP-nc <sup>1</sup>  | CTUh              |    | 8.31E-06 | 5.70E-09 | 7.21E-09 | 1.07E-08 | 3.86E-10 |
|                | SQP <sup>1</sup>     | dimensionless     |    | 1.06E+03 | 4.53E+00 | 7.93E-01 | 8.66E+00 | 5.64E-02 |
| Ind            | licator              | Unit              | В6 | C1       | C2       | C3       | C4       | D        |

| li li                | ndicator            | Unit              | В6       | C1       | C2       | C3       | C4       | D         |
|----------------------|---------------------|-------------------|----------|----------|----------|----------|----------|-----------|
|                      | PM                  | Disease incidence | 5.69E-06 | 0.00E+00 | 6.50E-09 | 8.42E-09 | 1.27E-08 | -1.56E-06 |
|                      | IRP <sup>2</sup>    | kgBq U235 -eq     | 6.71E+01 | 0.00E+00 | 1.50E-03 | 1.49E-02 | 3.53E-03 | -5.34E-01 |
| <i>(2)</i>           | ETP-fw <sup>1</sup> | CTUe              | 5.37E+03 | 0.00E+00 | 1.55E-01 | 1.05E+01 | 1.13E+02 | -5.34E+03 |
| 44.<br>*** <u>\$</u> | HTP-c <sup>1</sup>  | CTUh              | 1.50E-07 | 0.00E+00 | 0.00E+00 | 1.02E-08 | 5.74E-10 | -3.35E-08 |
| ₩ <u></u>            | HTP-nc <sup>1</sup> | CTUh              | 5.17E-06 | 0.00E+00 | 8.67E-10 | 5.98E-07 | 4.24E-09 | -2.47E-06 |
|                      | SQP <sup>1</sup>    | dimensionless     | 1.85E+03 | 0.00E+00 | 7.01E-01 | 9.92E-01 | 4.50E+00 | -1.20E+02 |

PM = Particulate Matter emissions; IRP = Ionizing radiation – human health; ETP-fw = Eco toxicity – freshwater; HTP-c = Human toxicity – cancer effects; HTP-nc = Human toxicity – non cancer effects; SQP = Potential Soil Quality Index (dimensionless)

<sup>&</sup>quot;Reading example: 9.0 E-03 = 9.0\*10-3 = 0.009"

<sup>1.</sup> The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

<sup>2.</sup> This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.



| Resource use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |   |                         |                                                                            |                                                                   |                                                                                        |                                                                       |                                                                            |                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---|-------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Indicator                               |   | U                       | nit                                                                        | A1                                                                | A2                                                                                     | A3                                                                    | A4                                                                         | A5                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PERE                                    |   | N                       | ΜJ                                                                         | 3.30E+02                                                          | 1.41E-01                                                                               | 5.87E+01                                                              | 2.51E-01                                                                   | 1.69E-03                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PERM                                    |   | MJ                      |                                                                            | 8.15E+00                                                          | 0.00E+00                                                                               | 0.00E+00                                                              | 0.00E+00                                                                   | -1.03E+00                                                             |
| ₽.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PERT                                    | г |                         | ΜJ                                                                         | 3.38E+02                                                          | 1.41E-01                                                                               | 5.87E+01                                                              | 2.51E-01                                                                   | -1.03E+00                                                             |
| <b>3</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PENRE                                   |   | N                       | ΜJ                                                                         | 2.72E+03                                                          | 9.50E+00                                                                               | 3.25E+00                                                              | 1.45E+01                                                                   | 8.83E-02                                                              |
| Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PENRM                                   |   | N                       | MJ                                                                         | 3.66E+00                                                          | 0.00E+00                                                                               | 0.00E+00                                                              | 0.00E+00                                                                   | -1.94E-01                                                             |
| ÍÂ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PENRT                                   |   | N                       | MJ                                                                         | 2.72E+03                                                          | 9.50E+00                                                                               | 3.25E+00                                                              | 1.45E+01                                                                   | -1.06E-01                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SM                                      |   | k                       | kg                                                                         | 1.23E+00                                                          | 0.00E+00                                                                               | 0.00E+00                                                              | 0.00E+00                                                                   | 0.00E+00                                                              |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RSF                                     |   | N                       | MJ                                                                         | 4.90E-02                                                          | 4.44E-05                                                                               | 4.02E-05                                                              | 8.41E-05                                                                   | 5.12E-05                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NRSF                                    |   | N                       | MJ                                                                         | 8.23E-03                                                          | 0.00E+00                                                                               | 2.46E-04                                                              | 0.00E+00                                                                   | 4.47E-04                                                              |
| (96)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FW                                      |   | m <sup>3</sup>          |                                                                            | 2.02E+00                                                          | 1.12E-03                                                                               | 4.16E-01                                                              | 1.96E-03                                                                   | 5.34E-05                                                              |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |   | n                       | ทั                                                                         | 2.02L+00                                                          | 1.121 03                                                                               | 1.102 01                                                              | 1.502 05                                                                   | 3.3 IL 03                                                             |
| In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | dicator                                 |   | Unit n                  | B6                                                                         | C1                                                                | C2                                                                                     | C3                                                                    | C4                                                                         | D D                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |   |                         |                                                                            |                                                                   |                                                                                        |                                                                       |                                                                            |                                                                       |
| In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | dicator                                 |   | Unit                    | В6                                                                         | C1                                                                | C2                                                                                     | C3                                                                    | C4                                                                         | D                                                                     |
| in<br>्ट्र                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>dicator</b> PERE                     |   | <b>Unit</b><br>MJ       | B6<br>1.49E+03                                                             | C1<br>0.00E+00                                                    | C2<br>2.04E-02                                                                         | C3<br>4.25E-01                                                        | C4<br>5.11E-01                                                             | D<br>-2.65E+01                                                        |
| In S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | dicator PERE PERM                       |   | <b>Unit</b><br>MJ<br>MJ | B6<br>1.49E+03<br>0.00E+00                                                 | C1<br>0.00E+00<br>0.00E+00                                        | C2<br>2.04E-02<br>0.00E+00                                                             | C3<br>4.25E-01<br>-7.12E+00                                           | C4<br>5.11E-01<br>0.00E+00                                                 | D -2.65E+01 0.00E+00                                                  |
| In<br>T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | dicator  PERE  PERM  PERT               |   | MJ<br>MJ                | B6<br>1.49E+03<br>0.00E+00<br>1.49E+03                                     | C1<br>0.00E+00<br>0.00E+00<br>0.00E+00                            | C2<br>2.04E-02<br>0.00E+00<br>2.04E-02                                                 | C3<br>4.25E-01<br>-7.12E+00<br>-6.69E+00                              | C4<br>5.11E-01<br>0.00E+00<br>5.11E-01                                     | D -2.65E+01 0.00E+00 -2.65E+01                                        |
| In S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | dicator  PERE  PERM  PERT  PENRE        |   | MJ MJ MJ                | B6<br>1.49E+03<br>0.00E+00<br>1.49E+03<br>7.68E+03                         | C1<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00                | C2<br>2.04E-02<br>0.00E+00<br>2.04E-02<br>1.18E+00                                     | C3<br>4.25E-01<br>-7.12E+00<br>-6.69E+00<br>2.62E+00                  | C4<br>5.11E-01<br>0.00E+00<br>5.11E-01<br>1.68E+00                         | D -2.65E+01 0.00E+00 -2.65E+01 -1.78E+02                              |
| In Single Control of the Control of | dicator  PERE  PERM  PERT  PENRE  PENRM |   | MJ MJ MJ MJ             | B6<br>1.49E+03<br>0.00E+00<br>1.49E+03<br>7.68E+03<br>0.00E+00             | C1<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00    | C2<br>2.04E-02<br>0.00E+00<br>2.04E-02<br>1.18E+00<br>0.00E+00                         | C3<br>4.25E-01<br>-7.12E+00<br>-6.69E+00<br>2.62E+00<br>-3.47E+00     | C4 5.11E-01 0.00E+00 5.11E-01 1.68E+00 0.00E+00                            | D -2.65E+01 0.00E+00 -2.65E+01 -1.78E+02 -3.18E+01                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PERE PERM PERT PENRE PENRM PENRM        |   | MJ MJ MJ MJ MJ MJ MJ    | B6<br>1.49E+03<br>0.00E+00<br>1.49E+03<br>7.68E+03<br>0.00E+00<br>7.68E+03 | C1<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00    | C2<br>2.04E-02<br>0.00E+00<br>2.04E-02<br>1.18E+00<br>0.00E+00<br>1.18E+00             | C3 4.25E-01 -7.12E+00 -6.69E+00 2.62E+00 -3.47E+00 -8.46E-01          | C4<br>5.11E-01<br>0.00E+00<br>5.11E-01<br>1.68E+00<br>0.00E+00<br>1.68E+00 | D -2.65E+01 0.00E+00 -2.65E+01 -1.78E+02 -3.18E+01 -2.10E+02          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DERE PERM PERT PENRE PENRM PENRT SM     |   | MJ MJ MJ MJ MJ kg       | B6<br>1.49E+03<br>0.00E+00<br>1.49E+03<br>7.68E+03<br>0.00E+00<br>7.68E+03 | C1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 | C2<br>2.04E-02<br>0.00E+00<br>2.04E-02<br>1.18E+00<br>0.00E+00<br>1.18E+00<br>0.00E+00 | C3 4.25E-01 -7.12E+00 -6.69E+00 2.62E+00 -3.47E+00 -8.46E-01 0.00E+00 | C4 5.11E-01 0.00E+00 5.11E-01 1.68E+00 0.00E+00 1.68E+00 1.29E-02          | D -2.65E+01 0.00E+00 -2.65E+01 -1.78E+02 -3.18E+01 -2.10E+02 1.64E-01 |

PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non renewable primary energy excluding non-renewable primary energy resources used as raw materials; PENRM = Use of non renewable primary energy resources; SM = Use of secondary materials; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Net use of fresh water

"Reading example: 9.0 E-03 = 9.0\*10-3 = 0.009"



| End of life - Waste |      |      |    |          |          |          |          |          |           |
|---------------------|------|------|----|----------|----------|----------|----------|----------|-----------|
| Indicator           |      | Unit |    | A1       | A2       | A3       | A4       | A5       |           |
|                     | HWD  | HWD  |    | kg       |          | 1.30E-02 | 2.71E-02 | 2.09E-02 | 1.92E-03  |
| Ō                   | NHWD | kg   |    | g        | 7.43E+02 | 2.56E-01 | 6.23E-01 | 4.40E-01 | 8.87E-03  |
| <u> </u>            | RWD  |      | kg |          | 5.81E-03 | 2.97E-05 | 2.71E-05 | 4.61E-06 | 5.21E-07  |
| Indicator           |      | Unit | В6 | C1       | C2       | C3       | C4       | D        |           |
| Ā                   | HWD  |      | kg | 1.15E+00 | 0.00E+00 | 1.69E-03 | 2.98E-04 | 6.05E-01 | -4.33E-02 |
| Ū                   | NHWD |      | kg | 2.60E+01 | 0.00E+00 | 3.57E-02 | 4.02E-01 | 1.15E+00 | -2.05E+00 |
| 8                   | RWD  |      | kg | 5.48E-02 | 0.00E+00 | 3.73E-07 | 1.48E-05 | 1.88E-06 | -4.60E-04 |

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed

"Reading example: 9.0 E-03 = 9.0\*10-3 = 0.009"

| End of life - Output flow |     |      |          |          |          |          |          |           |
|---------------------------|-----|------|----------|----------|----------|----------|----------|-----------|
| Indicator                 |     | Un   | Unit     |          | A2       | A3       | A4       | A5        |
| <b>®&gt;</b>              | CRU | kg   | kg       |          | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00  |
| &>                        | MFR | kç   | kg       |          | 0.00E+00 | 8.96E-03 | 0.00E+00 | 1.31E-01  |
| Þ₹                        | MER | kg   | kg       |          | 0.00E+00 | 4.88E-03 | 0.00E+00 | 1.82E-01  |
| <b>5</b> D                | EEE | МЈ   |          | 0.00E+00 | 0.00E+00 | 3.08E-03 | 0.00E+00 | 1.28E-01  |
| <b>⊳</b> ∄                | EET | М    | MJ       |          | 0.00E+00 | 4.66E-02 | 0.00E+00 | 1.94E+00  |
| Indicator                 |     | Unit | В6       | C1       | C2       | C3       | C4       | D         |
| <b>∅&gt;</b>              | CRU | kg   | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00  |
| &▷                        | MFR | kg   | 0.00E+00 | 0.00E+00 | 0.00E+00 | 3.16E-01 | 8.71E-05 | -6.96E-03 |
| DF                        | MER | kg   | 0.00E+00 | 0.00E+00 | 0.00E+00 | 9.71E-01 | 2.13E-06 | -3.19E-03 |
| <b>₹</b> >                | EEE | MJ   | 0.00E+00 | 0.00E+00 | 0.00E+00 | 1.49E+00 | 1.38E-04 | -6.16E-03 |
| Da                        | EET | MJ   | 0.00E+00 | 0.00E+00 | 0.00E+00 | 2.26E+01 | 2.09E-03 | -9.32E-02 |

CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported energy electrical; EET = Exported energy thermal "Reading example: 9.0 E-03 = 9.0\*10-3 = 0.009"

| Biogenic Carbon Content |                     |  |  |  |  |  |  |
|-------------------------|---------------------|--|--|--|--|--|--|
| Unit                    | At the factory gate |  |  |  |  |  |  |
| kg C                    | 2.33E-01            |  |  |  |  |  |  |
| kg C                    | 1.37E-01            |  |  |  |  |  |  |
|                         | kg C                |  |  |  |  |  |  |

Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO2



### **Additional requirements**

### Greenhouse gas emissions from the use of electricity in the manufacturing phase

The table below presents the calculation of GWP values for energy resources used during the manufacturing stage (A3), based on both the location-based and market-based approaches. This information is provided for transparency, allowing EPD users to understand the impact of these methodological choices. The main environmental impact results in the EPD are reported using the: Location-based approach.

| Energy source                                                | Data source      | Amount | Unit | GWP-total<br>[kg CO <sub>2</sub> -eq/unit] | SUM<br>[kg CO <sub>2</sub> -eq] |
|--------------------------------------------------------------|------------------|--------|------|--------------------------------------------|---------------------------------|
| Location based approach                                      |                  |        |      |                                            |                                 |
| Electricity, Norway, medium voltage (kWh) - ecoinvent 3.10.1 | ecoinvent 3.10.1 | 15.00  | kWh  | 0.02                                       | 0.30                            |
| Market based approach                                        |                  |        |      |                                            |                                 |
| Electricity, Norway, medium voltage, residual mix (kWh)      | ecoinvent 3.10.1 | 15.00  | kWh  | 0.62                                       | 9.30                            |

### **Dangerous substances**

The product contains no substances given by the REACH Candidate list.

### **Indoor environment**

### **Additional Environmental Information**

| Additional environmental impact indicators required in NPCR Part A for construction products |                        |          |            |          |          |          |           |  |
|----------------------------------------------------------------------------------------------|------------------------|----------|------------|----------|----------|----------|-----------|--|
| Indicator                                                                                    | Unit                   |          | A1 A2 A3 A |          | A4       | A5       |           |  |
| GWPIOBC kg CO <sub>2</sub> -eq                                                               |                        |          | 2.09E+02   | 6.97E-01 | 2.76E-01 | 1.04E+00 | 1.13E-02  |  |
| Indicator                                                                                    | Unit                   | В6       | C1         | C2       | C3       | C4       | D         |  |
| GWPIOBC                                                                                      | kg CO <sub>2</sub> -eq | 3.75E+02 | 0.00E+00   | 8.39E-02 | 2.64E+00 | 2.42E-01 | -1.22E+01 |  |

GWP-IOBC: Global warming potential calculated according to the principle of instantaneous oxidation. In order to increase the transparency of biogenic carbon contribution to climate impact, the indicator GWP-IOBC is required as it declares climate impacts calculated according to the principle of instantaneous oxidation. GWP-IOBC is also referred to as GWP-GHG in context to Swedish public procurement legislation.



### **Bibliography**

ISO 14025:2010. Environmental labels and declarations - Type III environmental declarations - Principles and procedures. International Organization for Standardization.

ISO 14044:2006. Environmental management - Life cycle assessment - Requirements and guidelines. International Organization for Standardization.

EN 15804:2012+A2:2019. Environmental product declaration - Core rules for the product category of construction products. European Committee for Standardization.

ISO 21930:2017. Sustainability in buildings and civil engineering works - Core rules for environmental product declarations of construction products. International Organization for Standardization.

EN 50693:2019. Product category rules for life cycle assessments of electronic and electrical products and systems. European Committee for Standardization.

Ecoinvent v3, 2019. Allocation, cut-off by classification. Swiss Centre of Life Cycle Inventories.

Iversen et al., (2021). eEPD v2021.09, background information for EPD generator tool system verification, LCA.no. Report number: 07.21. System verification report.

Babwah & Philis (2023). EPD generator for EPD Italy PCR 017 part B for charging stations, background information for EPD generator application and LCA data, LCA.no. Report number: 11.23. PCR verification report.

EPD Italy (2020). PCR EPD Italy 007 Part A for electronic and electrical products and systems. EPD Italy. Version 3, issue 13-01-2023 and valid until 19-01-2025.

EPD Italy (2020). PCR EPD Italy 017 Part B for charging stations. EPD Italy. Version 1, issue 19-10-2020 and valid until 19-10-2025.

| © epd-global          | Program operator and publisher              | Phone:  | +47 977 22 020       |
|-----------------------|---------------------------------------------|---------|----------------------|
|                       | EPD-Global                                  | e-mail: | post@epd-norge.no    |
| Powered by EPD-Norway | Post Box 5250 Majorstuen, 0303 Oslo, Norway | web:    | www.epd-global.com   |
|                       | Owner of the declaration:                   | Phone:  |                      |
| (z) Zaptec            | Zaptec Charger AS                           |         | fh@zaptec.com        |
| 0                     | Vassbotnen 1, Norway                        | web:    | ili@zaptec.com       |
|                       | Author of the Life Cycle Assessment         | Phone:  | +47 916 50 916       |
| (LCA <sup>)</sup>     | LCA.no AS                                   | e-mail: | post@lca.no          |
| .no                   | Dokka 6A, 1671 Kråkerøy, Norway             | web:    | www.lca.no           |
|                       | Developer of EPD generator                  | Phone:  | +47 916 50 916       |
| (LCA\                 | LCA.no AS                                   | e-mail: | post@lca.no          |
| .no                   | Dokka 6A, 1671 Kråkerøy, Norway             | web:    | www.lca.no           |
| ECO PLATFORM          | ECO Platform                                | web:    | www.eco-platform.org |
| VERIFIED              | ECO Portal                                  | web:    | ECO Portal           |
| - CANTIED             |                                             |         |                      |