PRODUCT ENVIRONMENTAL PROFILE # Basic Express MD 360° 08 IR 1C FM IP23 WH ## Holder of the declaration ESYLUX GmbH & Co. KG An der Strusbek 40 22926, Ahrensburg https://www.esylux.com PEP directed by Qweeko hello@qweeko.io #### References covered EB10431777, EB10431784 ## Methodology This PEP has been produced in compliance with the PCR version PCR-ed4-FR-2021 09 06 and the PSR version PSR-0005-ed3.1-FR-2023 12 08 of the PEP ecopassport program. For more information, visit the program website www.pep-ecopassport.org Reference product Functional unit Identification of the reference product: BASIC EXPRESS MD 360° 08 IR 1C FM IP23 WH EB10431777 Product category (PSR): Family: Electrical switchgear and control gear solutions Sub-family: Other equipments Detect a 360 ° presence to switch on the lights, for 10 years #### **Technical characteristics** | Rate of uptime in on mode | 20 % | |-----------------------------------|-----------------| | Rate of uptime in standby mode | 80 % | | Detector detection angle | 360 ° | | Power consumption in on mode | 0.4 W | | Power consumption in standby mode | 0.4 W | | Detector function | Light switching | ## **Covered References** The environmental data of the Reference Product are representative of the environmental data of the following associated references : EB10431784. #### **Materials and substances** All useful measures have been taken to ensure that the materials used in the composition of the product do not contain substances prohibited by the regulations in force when it was placed on the market. The mass of the reference product is 0.082 kg. The mass of the product packaging is 0.036 kg. The constituent materials are: | Plastics | g | % | Metals | g | % | Others | g | % | |---------------|-------|------|------------------------------------|------|-----|-----------------|-------|------| | Polycarbonate | 30.5 | 25.6 | High carbon galvanized steel wire | 5.99 | 5.0 | Paper Cardboard | 27.21 | 22.8 | | HDPE | 4.56 | 3.8 | Carbon cold-heading steel wire rod | 1.19 | 1.0 | Capacitor | 9.69 | 8.1 | | Nylon PA66 | 1.02 | 0.9 | | | | Paper | 8.0 | 6.7 | | | | | | | | PCB | 7.26 | 6.1 | | | | | | | | Relay | 5.9 | 4.9 | | | | | | | | Others | 18.01 | 15.1 | | Total | 36.08 | 30.2 | Total | 7.18 | 6.0 | Total | 76.07 | 63.7 | Total mass of the reference product: 0.12 kg The masses indicated correspond to the masses modeled within the framework of the PEP, and may present slight variations with the masses indicated in the technical documentation of the products, due to the assumptions made for the study. These masses do not include the packaging materials of the raw materials, which are modeled according to the recommendations of the PCR-ed4-FR-2021 09 06. ## Additional environmental information | Manufacturing | Manufactured in a factory in China. The components are sourced from Asia and the Middle East. Raw materials, transportation to the production site, manufacturing of components and parts, assembly, packaging, and waste disposal were all taken into consideration. | |---------------|--| | Distribution | The main market is Europe. Distribution was modeled considering an intracontinental transport scenario of 3,500 km by truck, as described in PEP-PCR-ed4-FR-2021 09 06. | | Installation | The product does not require any specific installation procedure and its installation does not require energy. Transportation and disposal of the product packaging are included in this step, in accordance with the European scenarios of the PSR-0005-ed3.1-FR-2023 12 08 rules. | | | The product does not generate any direct emissions (B1). Furthermore, no standard repairs (B3, B4), refurbishment (B5), or maintenance (B2) are anticipated. The use of the product does not require water (B7). | | Use | The use of the product results in electricity consumption (B6): C = (Pactive x %active + Pstandby x %standby) x Lifetime C = (0.4 * 0.2 + 0.4 * 0.8) * 10.0 * 8766.0/1000 = 35.06 kWh Pactive: Power in active mode (W) Pstandby: Consumption in standby mode (W) %active: Percentage of time in active mode %standby: Percentage of time in standby mode The main market is Europe, so the European energy mix has been used here. | | End of life | The end-of-life treatment of presence detectors was modeled using Ecosystem's public ICV modules (referred to as ESR), in accordance with the recommendations of PCR Edition 4. ESR data without virgin material substitution benefits were used. ESR data for "small professional electrical equipment (medical, construction, industry, and research)" were used. | ## **Environmental impacts** The environmental impact assessment covers the following stages of the product life cycle: Manufacturing (A1-A3), Distribution (A4), Installation (A5), Use (B1-B7), End of life (C1-C4) and Benefits and burdens across system boundaries (D). The calculations were carried out with the OpenLCA software version 2.0.2 associated with the Ecoinvent database version 3.91 and the Ecosystem database. Indicator set: Indicators for PEF EF 3.1 (Compliance: PEP ed.4, EN15804+A2) v2.0 PEP. Representative of the products covered, installed and marketed in: Europe. Energy models considered for each phase: | Manufacturing (A1 - A3) | Distribution (A4) | Installation (A5) | Use (B1-B7) | End of life (C1-C4) | |-------------------------|-------------------|-------------------|-------------|---------------------| | China | Europe | Europe | Europe | Europe | #### Environmental impact of the reference product calculated for the functional unit This environmental declaration has been developed considering the following functional unit: Detect a 360 ° presence to switch on the lights, for 10 years #### **Mandatory environmental impact indicators** | Indicators | Unit | A1-A3 | A4 | A 5 | B1-B7* | C1-C4 | Total
(excluding D) | |--|-----------------|----------|----------|------------|----------|----------|------------------------| | Environment: Global warming potential (total) GWPT | kg CO2 eq | 1.23E+01 | 7.95E-02 | 7.95E-03 | 1.29E+01 | 1.50E-01 | 2.54E+01 | | Environment: Global
warming potential
(fossil) GWPF | kg CO2 eq | 1.23E+01 | 7.94E-02 | 2.00E-03 | 1.24E+01 | 1.50E-01 | 2.49E+01 | | Environment: Global
warming potential
(biogenic) GWPB | kg CO2 eq | 3.72E-02 | 2.46E-05 | 5.95E-03 | 4.26E-01 | 7.16E-06 | 4.70E-01 | | Environment: Global
warming potential
(land use) GWPL | kg CO2 eq | 2.30E-02 | 4.09E-05 | 4.03E-07 | 3.10E-02 | 0 | 5.40E-02 | | Environment: Ozone depletion potential ODP | kg CFC-11
eq | 7.51E-07 | 1.19E-09 | 2.01E-11 | 2.36E-07 | 8.27E-09 | 9.97E-07 | | Environment:
Acidification
potential AP | mol H+ eq | 9.93E-02 | 2.81E-04 | 3.71E-06 | 7.12E-02 | 1.50E-03 | 1.72E-01 | | Environment:
Eutrophication
potential (freshwater)
EPF | kg P eq | 1.51E-02 | 6.45E-06 | 8.09E-08 | 1.17E-02 | 3.21E-09 | 2.69E-02 | | Environment:
Eutrophication potential
(marine) EPM | kg N eq | 1.71E-02 | 9.23E-05 | 3.72E-06 | 1.15E-02 | 1.05E-06 | 2.87E-02 | | Environment:
Eutrophication potential
(terrestrial)
 EPT | mol N eq | 1.84E-01 | 9.79E-04 | 1.47E-05 | 1.04E-01 | 1.44E-04 | 2.89E-01 | D -6.93E-02 -7.19E-02 2.57E-03 0 -5.94E-09 -3.55E-03 -1.53E-27 -4.93E-06 -7.17E-04 | Indicators | Unit | A1-A3 | A4 | A5 | B1-B7* | C1-C4 | Total
(excluding D) | |---|--------------------|----------|----------|----------|----------|----------|------------------------| | Environment:
Photochemical ozone
creation potential
POCP | kg NMVOC
eq | 5.52E-02 | 3.78E-04 | 5.38E-06 | 3.34E-02 | 1.11E-04 | 8.91E-02 | | Environment: Abiotic
depletion potential
(elements) ADPE | kg Sb eq | 3.95E-03 | 2.60E-07 | 2.65E-09 | 1.51E-04 | 8.90E-10 | 4.10E-03 | | Environment: Abiotic
depletion potential
(fossils) ADPF | MJ (net calorific) | 1.60E+02 | 1.12E+00 | 1.14E-02 | 2.87E+02 | 0 | 4.48E+02 | | Environment: Water deprivation potential WDP | m3 world eq | 4.45E+00 | 5.30E-03 | 3.01E-04 | 7.13E+00 | 0 | 1.16E+01 | | D | |-----------| | -3.08E-04 | | -9.81E-05 | | 0 | | 0 | ## Optional environmental impact indicators | Indicators | Unit | A1-A3 | A4 | A 5 | B1-B7* | C1-C4 | Total
(excluding D) | |---|----------------------|----------|----------|------------|----------|----------|------------------------| | Environment:
Particulate matter
formation PMF | disease
incidence | 6.83E-07 | 6.31E-09 | 6.75E-11 | 2.61E-07 | 5.05E-09 | 9.55E-07 | | Environment:
lonising radiation
(human health)
IRH | kBq U235 eq | 1.45E+00 | 9.52E-04 | 1.63E-05 | 7.95E+00 | 4.10E-03 | 9.40E+00 | | Environment:
Ecotoxicity potential
(freshwater) ETPF | CTUe | 3.07E+02 | 6.23E-01 | 2.38E-02 | 4.74E+01 | 1.66E-01 | 3.56E+02 | | Environment:
Human toxicity
(carcinogenic) HTC | CTUh | 9.10E-09 | 3.60E-11 | 7.78E-13 | 6.20E-09 | 9.88E-11 | 1.54E-08 | | Environment: Human
toxicity (non-
carcinogenic)
 HTNC | CTUh | 4.57E-07 | 8.07E-10 | 4.66E-11 | 2.49E-07 | 1.15E-08 | 7.18E-07 | | Environment: Land
use and land use
change LULUC | dimensionless | 5.53E+01 | 6.65E-01 | 7.35E-03 | 5.49E+01 | 6.79E-02 | 1.11E+02 | | D | |-----------| | -9.39E-09 | | -2.58E-03 | | -5.08E-01 | | -3.41E-10 | | -3.10E-08 | | -4.15E-01 | | | ^{*}The detailed results of the module B can be found in the tables located at this end of this section. ^{*}The detailed results of the module B can be found in the tables located at this end of this section. ## **Resource utilisation indicators** | Indicators | Unit | A1-A3 | A 4 | A 5 | B1-B7* | C1-C4 | Total
(excluding D) | |---|---------------|----------|------------|------------|----------|----------|------------------------| | Primary energy: Renewable
(energy use)
 PERE | MJ
(PERE) | 1.79E+01 | 1.42E-02 | 2.05E-04 | 6.33E+01 | 0 | 8.12E+01 | | Primary energy:
Renewable (material use)
 PERM | MJ
(PERM) | 0 | 0 | 0 | 0 | 0 | 0 | | Primary energy:
Renewable (total) PERT | MJ (PERT) | 1.79E+01 | 1.42E-02 | 2.05E-04 | 6.33E+01 | 0 | 8.12E+01 | | Primary energy: Non-
renewable (energy use)
 PENRE | MJ
(PENRE) | 1.56E+02 | 1.03E+00 | 1.05E-02 | 2.83E+02 | 2.03E-01 | 4.40E+02 | | Primary energy: Non-
renewable (material use)
 PENRM | MJ
(PENRM) | 4.01E+00 | 9.63E-02 | 9.49E-04 | 4.12E+00 | 0 | 8.23E+00 | | Primary energy: Non-
renewable (total)
PENRT | MJ
(PENRT) | 1.60E+02 | 1.12E+00 | 1.14E-02 | 2.87E+02 | 2.03E-01 | 4.48E+02 | | Resource: Secondary materials SM | kg (SM) | 4.55E-01 | 8.26E-04 | 1.45E-05 | 3.70E+00 | 0 | 4.16E+00 | | Resource: Renewable secondary fuels RSF | MJ (RSF) | 1.77E-01 | 1.02E-04 | 3.29E-06 | 2.15E+00 | 0 | 2.33E+00 | | Resource: Non-
renewable secondary
fuels NRSF | MJ
(NRSF) | 4.84E-01 | 4.66E-04 | 7.02E-06 | 2.13E+00 | 0 | 2.62E+00 | | Resource: Net use of fresh water FW | m3 (FW) | 9.54E-02 | 1.33E-04 | 5.54E-06 | 2.28E-01 | 6.56E-01 | 9.79E-01 | | D | |-----------| | 0 | | 0 | | 0 | | -7.27E-02 | | 0 | | -7.27E-02 | | 0 | | 0 | | 0 | | -5.97E-01 | | | ## Waste category indicators | Indicators | Unit | A1-A3 | A4 | A 5 | B1-B7* | C1-C4 | Total
(excluding D) | |-------------------------------------|--------------|-----------|-----------|------------|-----------|----------|------------------------| | Hazardous waste disposed HWD | kg (HWD) | -5.80E-01 | -1.28E-03 | -9.30E-05 | -2.81E-01 | 2.91E-01 | -5.71E-01 | | Non-hazardous waste disposed NHWD | kg
(NHWD) | -4.02E-01 | -5.29E-02 | -3.99E-03 | -8.73E-01 | 2.92E-01 | -1.04E+00 | | Radioactive waste disposed RWD | kg (RWD) | -3.56E-04 | -2.26E-07 | -3.97E-09 | -2.04E-03 | 5.29E-06 | -2.39E-03 | ^{-1.04}E-02 -1.09E-02 -2.68E-06 ^{*}The detailed results of the module B can be found in the tables located at this end of this section. ^{*}The detailed results of the module B can be found in the tables located at this end of this section. ## **Output flow indicators** | Indicators | Unit | A1-A3 | A4 | A5 | B1-B7* | C1-C4 | Total (excluding D) | |--|----------|----------|----------|----------|----------|-------|---------------------| | Output:
Components
for reuse
CRU | kg (CRU) | 0 | 0 | 0 | 0 | 0 | 0 | | Output:
Materials for
recycling
MFR | kg (MFR) | 1.58E+00 | 7.27E-04 | 1.17E-05 | 3.59E+00 | 0 | 5.18E+00 | | Output: Materials
for energy
recovery MER | kg (MER) | 0 | 0 | 0 | 0 | 0 | 0 | | Output:
Exported
energy
(electrical)
EEE | MJ (EEE) | 0 | 0 | 0 | 0 | 0 | 0 | | Output: Exported energy (thermal) EET | MJ (EET) | 0 | 0 | 0 | 0 | 0 | 0 | | D | |---| | 0 | | 0 | | 0 | | 0 | | 0 | ## **Biogenic Carbon Inventory Flow** | Indicators | Unit | Total | |---|---------|----------| | Biogenic carbon content of the product | kg of C | 0 | | Biogenic Carbon content of associated packaging | kg of C | 1.40E-02 | Indicators calculated based on the following values : Wood: 39.5% (EN16485), Paper: 37.8% (APSESA/RECORD) and Cardboard: 28% (ADEME) ## **Detailed Module B** | Indicators | Unit | B1 | B2 | В3 | B4 | B5 | В6 | B7 | Total module B | |---|--------------|----|----|----|----|----|----------|----|----------------| | Environment: Global warming potential (total) GWPT | kg CO2 eq | 0 | 0 | 0 | 0 | 0 | 1.29E+01 | 0 | 1.29E+01 | | Environment: Global warming potential (fossil) GWPF | kg CO2 eq | 0 | 0 | 0 | 0 | 0 | 1.24E+01 | 0 | 1.24E+01 | | Environment: Global warming potential (biogenic) GWPB | kg CO2 eq | 0 | 0 | 0 | 0 | 0 | 4.26E-01 | 0 | 4.26E-01 | | Environment: Global warming potential (land use) GWPL | kg CO2 eq | 0 | 0 | 0 | 0 | 0 | 3.10E-02 | 0 | 3.10E-02 | | Environment: Ozone depletion potential ODP | kg CFC-11 eq | 0 | 0 | 0 | 0 | 0 | 2.36E-07 | 0 | 2.36E-07 | | Environment: Acidification potential AP | mol H+ eq | 0 | 0 | 0 | 0 | 0 | 7.12E-02 | 0 | 7.12E-02 | ^{*}The detailed results of the module B can be found in the tables located at this end of this section. | Indicators | Unit | B1 | B2 | В3 | В4 | B5 | В6 | В7 | Total module B | |--|--------------------|----|----|----|----|----|-----------|----|----------------| | Environment: Eutrophication potential (freshwater) EPF | kg P eq | 0 | 0 | 0 | 0 | 0 | 1.17E-02 | 0 | 1.17E-02 | | Environment: Eutrophication potential (marine) EPM | kg N eq | 0 | 0 | 0 | 0 | 0 | 1.15E-02 | 0 | 1.15E-02 | | Environment: Eutrophication potential (terrestrial) EPT | mol N eq | 0 | 0 | 0 | 0 | 0 | 1.04E-01 | 0 | 1.04E-01 | | Environment: Photochemical ozone creation potential POCP | kg NMVOC eq | 0 | 0 | 0 | 0 | 0 | 3.34E-02 | 0 | 3.34E-02 | | Environment: Abiotic depletion potential (elements) ADPE | kg Sb eq | 0 | 0 | 0 | 0 | 0 | 1.51E-04 | 0 | 1.51E-04 | | Environment: Abiotic depletion potential (fossils) ADPF | MJ (net calorific) | 0 | 0 | 0 | 0 | 0 | 2.87E+02 | 0 | 2.87E+02 | | Environment: Water deprivation potential WDP | m3 world eq | 0 | 0 | 0 | 0 | 0 | 7.13E+00 | 0 | 7.13E+00 | | Environment: Particulate matter formation PMF | disease incidence | 0 | 0 | 0 | 0 | 0 | 2.61E-07 | 0 | 2.61E-07 | | Environment: Ionising radiation
(human health) IRH | kBq U235 eq | 0 | 0 | 0 | 0 | 0 | 7.95E+00 | 0 | 7.95E+00 | | Environment: Ecotoxicity potential (freshwater) ETPF | CTUe | 0 | 0 | 0 | 0 | 0 | 4.74E+01 | 0 | 4.74E+01 | | Environment: Human toxicity
(carcinogenic) HTC | CTUh | 0 | 0 | 0 | 0 | 0 | 6.20E-09 | 0 | 6.20E-09 | | Environment: Human toxicity (non-carcinogenic) HTNC | CTUh | 0 | 0 | 0 | 0 | 0 | 2.49E-07 | 0 | 2.49E-07 | | Environment: Land use and land use change LULUC | dimensionless | 0 | 0 | 0 | 0 | 0 | 5.49E+01 | 0 | 5.49E+01 | | Primary energy: Renewable
(energy use) PERE | MJ (PERE) | 0 | 0 | 0 | 0 | 0 | 6.33E+01 | 0 | 6.33E+01 | | Primary energy: Renewable
(material use) PERM | MJ (PERM) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Primary energy: Renewable (total)
 PERT | MJ (PERT) | 0 | 0 | 0 | 0 | 0 | 6.33E+01 | 0 | 6.33E+01 | | Primary energy: Non-renewable
(energy use) PENRE | MJ (PENRE) | 0 | 0 | 0 | 0 | 0 | 2.83E+02 | 0 | 2.83E+02 | | Primary energy: Non-renewable
(material use) PENRM | MJ (PENRM) | 0 | 0 | 0 | 0 | 0 | 4.12E+00 | 0 | 4.12E+00 | | Primary energy: Non-renewable (total) PENRT | MJ (PENRT) | 0 | 0 | 0 | 0 | 0 | 2.87E+02 | 0 | 2.87E+02 | | Resource: Secondary materials SM | kg (SM) | 0 | 0 | 0 | 0 | 0 | 3.70E+00 | 0 | 3.70E+00 | | Resource: Renewable secondary fuels RSF | MJ (RSF) | 0 | 0 | 0 | 0 | 0 | 2.15E+00 | 0 | 2.15E+00 | | Resource: Non-renewable secondary fuels NRSF | MJ (NRSF) | 0 | 0 | 0 | 0 | 0 | 2.13E+00 | 0 | 2.13E+00 | | Resource: Net use of fresh water FW | m3 (FW) | 0 | 0 | 0 | 0 | 0 | 2.28E-01 | 0 | 2.28E-01 | | Hazardous waste disposed HWD | kg (HWD) | 0 | 0 | 0 | 0 | 0 | -2.81E-01 | 0 | -2.81E-01 | | Non-hazardous waste disposed
NHWD | kg (NHWD) | 0 | 0 | 0 | 0 | 0 | -8.73E-01 | 0 | -8.73E-01 | | Radioactive waste disposed RWD | kg (RWD) | 0 | 0 | 0 | 0 | 0 | -2.04E-03 | 0 | -2.04E-03 | | Indicators | Unit | B1 | B2 | В3 | B4 | B5 | B6 | B7 | Total module B | |---|----------|----|----|----|----|----|----------|----|----------------| | Output: Components for reuse CRU | kg (CRU) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Output: Materials for recycling MFR | kg (MFR) | 0 | 0 | 0 | 0 | 0 | 3.59E+00 | 0 | 3.59E+00 | | Output: Materials for energy recovery MER | kg (MER) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Output: Exported energy (electrical) EEE | MJ (EEE) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Output: Exported energy (thermal)
 EET | MJ (EET) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ## Extrapolation factor of homogeneous environmental families The extrapolation factors calculated for the use phase are based on the power consumption of the references covered by this PEP, and for all other phases according to their weight. To assess the environmental impact of other products covered by the PEP, multiply the impact values of each phase by the corresponding factor: | Extrapolation factors | A1-A3 | A4 | A5 | B1-B7 | C1-C4 | D | |-----------------------|-------|-----------|-----------|-------|-------|---| | Reference Product | | | | | | | | EB10431777 | 1 | 1 | 1 | 1 | 1 | 1 | | Homogeneous Product | | | | | | | | EB10431784 | 1 | 1 | 1 | 1 | 1 | 1 | | Decistration symbols FL04 00040 V04 04 FN | Editorial rules: "PCR-ed4-FR-2" | 021 09 06" supplemented by "PSR-0005- ed3.1- | |---|----------------------------------|--| | Registration number: EL01-00010-V01.01-EN | FR-2023 12 08" | • | | Verifier authorization number: VH-52 | Information and repositories: wv | vw.pep-ecopassport.org | | Edition date: 08-2025 | Validity period: 5 years | | | Independent verification of declaration and data in according to the internal External | ordance with 130-14023.2000 | | | Critical review of the PCR conducted by a panel of experts chair | d by Julie ORGELET (DDemain) | PEP | | PEPs comply with standards NF C08-100-1:2016 and EN 50693:2 compared with elements from another program | 019. PEP elements cannot be | PASS | | Document compliant with standard ISO 14025: 2006 "Environme Type III Environmental Declarations » | ntal markings and declarations. | PORT _® |