

Environmental product declaration

In accordance with 14025 and EN15804+A2

Double Walled Cable Protection Pipes

The Norwegian EPD Foundation

Owner of the declaration: Pipelife Sverige AB

Product: Double Walled Cable Protection Pipes

Declared unit: 1 kg

This declaration is based on Product Category Rules: CEN Standard EN 15804:2012+A2:2019 serves as core PCR NPCR 028 Part B for Cable pipes **Program operator:** The Norwegian EPD Foundation

Declaration number: NEPD-4236-3477-EN

Registration number: NEPD-4236-3477-EN

Issue date: 02.03.2023

Valid to: 02.03.2028

EPD Software: LCA.no EPD generator ID: 57896

General information

Product Double Walled Cable Protection Pipes

Program operator:

Post Box 5250 Majorstuen, 0303 Oslo, Norway The Norwegian EPD Foundation Phone: +47 23 08 80 00 web: post@epd-norge.no

Declaration number: NEPD-4236-3477-EN

This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012+A2:2019 serves as core PCR NPCR 028 Part B for Cable pipes

Statement of liability:

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

Declared unit:

1 kg Double Walled Cable Protection Pipes

Declared unit with option:

A1,A2,A3,A4,A5,C1,C2,C3,C4,D

Functional unit:

General information on verification of EPD from EPD tools:

Independent verification of data, other environmental information and the declaration according to ISO 14025:2010, § 8.1.3 and § 8.1.4. Individualthird party verification of each EPD is not required when the EPD tool is i) integrated into the company's environmental management system, ii) the procedures for use of the EPD tool are approved by EPDNorway, and iii)the proccess is reviewed annualy. See Appendix G of EPD-Norway's General Programme Instructions for further information on EPD tools.

Verification of EPD tool:

Independent third party verification of the EPD tool, background data and test-EPD in accordance with EPDNorway's procedures and guidelines for verification and approval of EPD tools. Approval number: NEPDT49.

Third party verifier:

Owner of the declaration:

Pipelife Sverige AB Contact person: Phone: +46 513 22114 e-mail: yvette.lennartsson@pipelife.com

Manufacturer:

Pipelife Sverige AB

Place of production:

Pipelife Sverige AB Box 50 SE-524 02 Ljung , Sweden

Management system: EN ISO 9001:2015 and EN ISO 14001:2015

Organisation no:

SE556087042901

Issue date:

02.03.2023

Valid to: 02.03.2028

Year of study:

2022

Comparability:

EPD of construction products may not be comparable if they not comply with EN 15804 and seen in a building context.

Development and verification of EPD:

The declaration is created using EPD tool lca.tools ver EPD2022.03, developed by LCA.no. The EPD tool is integrated in the company's management system, and has been approved by EPD Norway.

Developer of EPD: Yvette Lennartsson

Reviewer of company-specific input data and EPD: Bjørn Svensson

Approved:

Håkon Hauan Managing Director of EPD-Norway

Vito D'Incognito - Take Care International (no signature required)

Product

Product description:

Double walled cable protection pipes with socket. Lenght 6 meter. Class SRN according to Verksnorm 5200.

Product specification

Article no:

70005406, 70005411, 70005416, 70005422, 70005408, 70005891, 70005418, 70005423, 70005407, 70005409, 70005419, 70005410, 70005420, 70005417, 70005890, 70005413, 70005414

Product related data to be found at Pipelife Sverige AB:s product catalogue. https://catalog.pipelife.com/se

Materials	kg	%
Pigments	0,15	13,11
Plastic - Polyethylene (HDPE)	0,34	29,72
Polyethylene (HDPE)	0,65	57,17
Total	1,14	

Technical data:

PE material with density 960 kg/m3. Produced according Verksnorm 5200.

Market:

Europe, with scenario made for the Swedish market.

Reference service life, product

Lifetime on product calculated more than 100 years.

Reference service life, building or construction works

LCA: Calculation rules

Declared unit:

1 kg Double Walled Cable Protection Pipes

Cut-off criteria:

All major raw materials and all the essential energy is included. The production processes for raw materials and energy flows with very small amounts (less than 1%) are not included. These cut-off criteria do not apply for hazardous materials and substances.

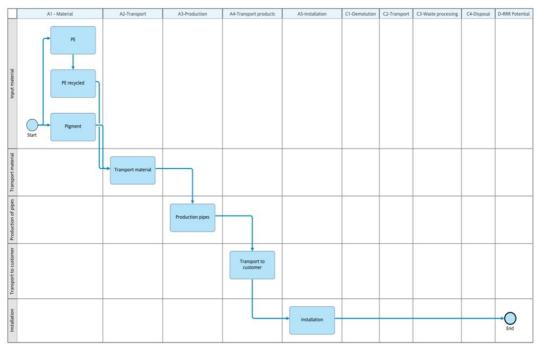
Allocation:

The allocation is made in accordance with the provisions of EN 15804:2012+A2:2019. Incoming energy and water and waste production in-house is allocated equally among all products through mass allocation. Effects of primary production of recycled materials is allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis.

Data quality:

Specific data for the product composition are provided by the manufacturer. The data represent the production of the declared product and were collected for EPD development in the year of study. Background data is based on EPDs according to EN 15804 and different LCA databases. The data quality of the raw materials in A1 is presented in the table below.

Materials	Source	Data quality	Year
Plastic - Polyethylene (HDPE)	ecoinvent 3.6	Database	2019
Polyethylene (HDPE)	ecoinvent 3.6	Database	2019
Pigments	ecoinvent 3.6	Database	2020


PIPELIFE 🔾

System boundaries (X=included, MND=module not declared, MNR=module not relevant)

	Product st	age		uction ion stage		Use stage End of life stage Beyond the system boundaries			End of life stage			Beyond the system boundaries				
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De- construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery- Recycling-potential
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
Х	Х	Х	Х	Х	MND	MND	MND	MND	MND	MND	MND	Х	Х	Х	Х	Х

System boundary:

EPD process Double Wall Cable Protection Pipes A1-D

Additional technical information:

LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

- A4 "Transport", from plant to customer is calculated on distance of 100 km with truck EURO class 6, 55% filling.
- A5 "Assembly", refer to NPCR 028 Part B for cable pipes
- C1- C4 "End of life stage", we assume that the pipes will remain in the ground, therefore no data input.
- D "Beyond the system boundaries", we assume that the pipes will remain in the ground, therefore no data input.

Transport from production place to user (A4)	Capacity utilisation (incl. return) %	Distance (km)	Fuel/Energy Consumption	Unit	Value (Liter/tonne)
Truck, over 32 tonnes, EURO 6 (km)	53,3 %	100	0,023	l/tkm	2,30

LCA: Results

The LCA results are presented below for the declared unit defined on page 2 of the EPD document.

Envir	Environmental impact											
	Indicator	Unit	A1	A2	A3	A4	A5	C1	C2	C3	C4	D
P	GWP-total	kg CO ₂ - eq	1,80E+00	1,77E-01	8,26E-02	8,72E-03	0	0	0	0	0	0
P	GWP-fossil	kg CO ₂ - eq	1,79E+00	1,77E-01	7,88E-02	8,71E-03	0	0	0	0	0	0
P	GWP-biogenic	kg CO ₂ - eq	7,76E-03	7,20E-05	1,19E-03	3,73E-06	0	0	0	0	0	0
P	GWP-luluc	kg CO ₂ - eq	5,74E-04	6,17E-05	2,61E-03	2,65E-06	0	0	0	0	0	0
Ò	ODP	kg CFC11 - eq	2,28E-07	4,02E-08	2,43E-08	2,10E-09	0	0	0	0	0	0
	AP	mol H+ -eq	7,01E-03	7,22E-04	5,19E-04	2,80E-05	0	0	0	0	0	0
	EP-FreshWater	kg P -eq	2,96E-05	1,39E-06	4,23E-06	6,93E-08	0	0	0	0	0	0
	EP-Marine	kg N -eq	1,13E-03	2,14E-04	1,28E-04	6,14E-06	0	0	0	0	0	0
÷	EP-Terrestial	mol N - eq	1,25E-02	2,37E-03	1,51E-03	6,85E-05	0	0	0	0	0	0
	РОСР	kg NMVOC -eq	5,57E-03	7,25E-04	3,96E-04	2,69E-05	0	0	0	0	0	0
-5D	ADP- minerals&metals ¹	kg Sb - eq	1,71E-05	4,78E-06	2,14E-06	1,55E-07	0	0	0	0	0	0
B	ADP-fossil ¹	MJ	6,01E+01	2,66E+00	5,18E+00	1,41E-01	0	0	0	0	0	0
%	WDP ¹	m ³	2,46E+02	2,54E+00	4,79E+02	1,08E-01	0	0	0	0	0	0

GWP total Global Warming Potential total; GWP fossil Global Warming Potential fossil fuels; GWP biogenic Global Warming Potential biogenic; GWP luluc Global W Potential land use change; ODP Ozone Depletion; AP Acidification; EP freshwater Eutrophication aquatic freshwater; EP marine Eutrophication aquatic marine; EP terrestrial Eutrophication terrestrial ;POCP Photochemical zone formation; ADPE Abiotic Depletion Potential minerals and metals; ADPf Abiotic Depletion Potential fossil fuels;

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

1. The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

Remarks to environmental impacts

The products are produced on 100% renewable energy according mass balance principle.

Addi	Additional environmental impact indicators												
Ind	licator	Unit	A1	A2	A3	A4	A5	C1	C2	C3	C4	D	
	PM	Disease incidence	8,73E-08	1,27E-08	6,72E-09	8,00E-10	0	0	0	0	0	0	
	IRP ²	kgBq U235 -eq	1,10E-01	1,16E-02	1,63E-01	6,18E-04	0	0	0	0	0	0	
	ETP-fw ¹	CTUe	1,53E+01	1,96E+00	2,94E+00	1,03E-01	0	0	0	0	0	0	
	HTP-c ¹	CTUh	5,54E-10	0,00E+00	1,27E-10	0,00E+00	0	0	0	0	0	0	
	HTP-nc ¹	CTUh	1,27E-08	2,12E-09	2,99E-09	1,00E-10	0	0	0	0	0	0	
Ò	SQP ¹	dimensionless	3,82E+00	1,84E+00	2,18E+00	1,62E-01	0	0	0	0	0	0	

PM Particulate Matter emissions; IRP Ionizing radiation – human health; ETP-fw Eco toxicity – freshwater; HTP-c Human toxicity – cancer effects; HTP-nc Human toxicity – non cancer effects; SQP Soil Quality (dimensionless)

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

1. The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

2. This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.

Resource	Resource use												
	dicator	Unit	A1	A2	A3	A4	A5	C1	C2	C3	C4	D	
i i	PERE	MJ	1,78E+00	3,76E-02	2,28E+00	1,78E-03	0	0	0	0	0	0	
R	PERM	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0	0	0	0	0	0	
ă,	PERT	MJ	1,78E+00	3,76E-02	2,28E+00	1,78E-03	0	0	0	0	0	0	
Ð	PENRE	MJ	1,99E+01	2,66E+00	5,26E+00	1,41E-01	0	0	0	0	0	0	
.Åe	PENRM	MJ	4,22E+01	0,00E+00	0,00E+00	0,00E+00	0	0	0	0	0	0	
IA	PENRT	MJ	6,21E+01	2,66E+00	5,26E+00	1,41E-01	0	0	0	0	0	0	
	SM	kg	3,44E-01	0,00E+00	1,34E-03	0,00E+00	0	0	0	0	0	0	
P	RSF	MJ	6,68E-02	1,34E-03	1,21E-02	6,23E-05	0	0	0	0	0	0	
Ū.	NRSF	MJ	1,28E-02	4,80E-03	3,12E-02	2,09E-04	0	0	0	0	0	0	
۲	FW	m ³	2,00E-02	2,80E-04	5,91E-02	1,61E-05	0	0	0	0	0	0	

PERE Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM Use of renewable primary energy resources used as raw materials; PERT Total use of renewable primary energy resources; PENRE Use of non renewable primary energy excluding non-renewable primary energy resources used as raw materials; PERT Total use of non renewable primary energy resources; SM use of secondary materials; RSF Use of non renewable primary energy resources; SM Use of secondary materials; RSF Use of renewable primary energy resources; SM use of secondary materials; RSF Use of renewable primary energy resources; SM use of secondary materials; RSF Use of net fresh water

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

End of lif	e - Waste											
Ind	icator	Unit	A1	A2	A3	A4	A5	C1	C2	C3	C4	D
	HWD	kg	7,08E-03	1,36E-04	3,08E-03	7,74E-06	0	0	0	0	0	0
Ū	NHWD	kg	7,23E-02	1,27E-01	2,01E-02	1,23E-02	0	0	0	0	0	0
R	RWD	kg	1,27E-04	1,81E-05	7,35E-05	9,66E-07	0	0	0	0	0	0

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed;

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

End of li	End of life - Output flow													
Ind	icator	Unit	A1	A2	A3	A4	A5	C1	C2	C3	C4	D		
\Diamond	CRU	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0	0	0	0	0	0		
\$\$	MFR	kg	4,58E-04	0,00E+00	1,76E-04	0,00E+00	0	0	0	0	0	0		
DF	MER	kg	1,73E-03	0,00E+00	1,09E-03	0,00E+00	0	0	0	0	0	0		
50	EEE	MJ	2,53E-03	0,00E+00	7,37E-03	0,00E+00	0	0	0	0	0	0		
Þū	EET	MJ	3,83E-02	0,00E+00	1,12E-01	0,00E+00	0	0	0	0	0	0		

CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported electrical energy; EET = Exported energy Thermal

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

Biogenic Carbon Content										
Indicator	Unit	At the factory gate								
Biogenic carbon content in product	kg C	0,00E+00								
Biogenic carbon content in accompanying packaging	kg C	0,00E+00								

Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO2

Additional Norwegian requirements

Greenhouse gas emissions from the use of electricity in the manufacturing phase

National production mix from import, low voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process (A3).

Electricity mix	Data source	Amount	Unit
Electricity, Sweden (kWh)	ecoinvent 3.6	54,94	g CO2-eq/kWh

Dangerous substances

The product contains no substances given by the REACH Candidate list or the Norwegian priority list.

Indoor environment

Additional Environmental Information

Environmen	invironmental impact indicators EN 15804+A1 and NPCR Part A v2.0												
Indicator	Unit	A1	A2	A3	A4	A5	C1	C2	C3	C4	D		
GWP	kg CO ₂ -eq	1,72E+00	1,75E-01	6,23E-02	8,62E-03	0	0	0	0	0	0		
ODP	kg CFC11 -eq	1,94E-07	3,18E-08	3,72E-08	1,70E-09	0	0	0	0	0	0		
POCP	kg C ₂ H ₄ -eq	4,88E-04	2,33E-05	1,23E-05	1,07E-06	0	0	0	0	0	0		
AP	kg SO ₂ -eq	5,77E-03	3,47E-04	2,20E-04	1,82E-05	0	0	0	0	0	0		
EP	kg PO ₄ ³⁻ -eq	5,35E-04	3,70E-05	3,33E-05	1,97E-06	0	0	0	0	0	0		
ADPM	kg Sb -eq	1,71E-05	4,78E-06	1,62E-06	1,55E-07	0	0	0	0	0	0		
ADPE	MJ	5,89E+01	2,61E+00	5,19E-01	1,39E-01	0	0	0	0	0	0		
GWPIOBC	kg CO ₂ -eq	1,73E+00	1,77E-01	5,74E-02	8,72E-03	0	0	0	0	0	0		

GWP Global warming potential; ODP Depletion potential of the stratospheric ozone layer; POCP Formation potential of tropospheric photochemical oxidants; AP Acidification potential of land and water; EP Eutrophication potential; ADPM Abiotic depletion potential for non fossil resources; ADPE Abiotic depletion potential for fossil resources; GWP-IOBC/GHG Global warming potential calculated according to the principle of instantanious oxidation (except emissions and uptake of biogenic carbon)

Bibliography

ISO 14025:2010. Environmental labels and declarations - Type III environmental declarations - Principles and procedures. International Organization for Standardization.

ISO 14044:2006. Environmental management - Life cycle assessment - Requirements and guidelines. International Organization for Standardization.

EN 15804:2012+A2:2019. Environmental product declaration - Core rules for the product category of construction products. European Committee for Standardization.

ISO 21930:2017. Sustainability in buildings and civil engineering works - Core rules for environmental product declarations of construction products. International Organization for Standardization.

EN 50693:2019. Product category rules for life cycle assessments of electronic and electrical products and systems. European Committee for Standardization.

Ecoinvent v3, 2019. Allocation, cut-off by classification. Swiss Centre of Life Cycle Inventories.

Iversen et al., (2021). eEPD v2021.09, background information for EPD generator tool system verification, LCA.no. Report number: 07.21. System verification report.

Philis et al., (2022). EPD generator for NPCR 028 part B for cable pipes, background information for EPD generator application and LCA data, LCA.no Report number: 06.22. PCR verification report.

EPD Norway (2022). NPCR Part A: Construction products and services. The Norwegian EPD foundation. Version 2.0 published 24.03.2021. EPD Norway (2022). NPCR 027 Part B for cable pipes. The Norwegian EPD foundation. Version 2.0 published 31.03.2022.

and norway	Program operator and publisher		Phone:	+47 23 08 80 00
C epd-norway	The Norwegian EPD Foundation		e-mail:	post@epd-norge.no
Global Program Operator	Post Box 5250 Majorstuen, 0303 Oslo, Norway		web:	www.epd-norge.no
PIPELIFE 🔘	Owner of the declaration:	Phone:	+46 51	13 22114
	Pipelife Sverige AB	e-mail:	yvette.	lennartsson@pipelife.com
	Box 50 , SE-524 02 Ljung	web:		
	Author of the Life Cycle Assessment		Phone:	+47 916 50 916
	LCA.no AS		e-mail:	post@lca.no
	Dokka 6B, 1671		web:	www.lca.no
LCA	Developer of EPD generator		Phone:	+47 916 50 916
	LCA.no AS		e-mail:	post@lca.no
	Dokka 6B,1671 Kråkerøy		web:	www.lca.no
	ECO Platform		web:	www.eco-platform.org
	ECO Portal		web:	ECO Portal